miércoles, 22 de junio de 2011

METROLOGIA

La metrología (del griego μετρoν, medida y λoγoς, tratado) es la ciencia e ingeniería de la medida, incluyendo el estudio, mantenimiento y aplicación del sistema de pesas y medidas. Actúa tanto en los ámbitos científico, industrial y legal, como en cualquier otro demandado por la sociedad. Su objetivo fundamental es la obtención y expresión del valor de las magnitudes, garantizando la trazabilidad de los procesos y la consecución de la exactitud requerida en cada caso; empleando para ello instrumentos métodos y medios apropiados.
La Metrología tiene dos características muy importantes el resultado de la medición y la incertidumbre de medida.
Los físicos y las industrias utilizan una gran variedad de instrumentos para llevar a cabo sus mediciones. Desde objetos sencillos como reglas y cronómetros, hasta potentes microscopios, medidores de láser e incluso avanzadas computadoras muy precisas.
Por otra parte, la Metrología es parte fundamental de lo que en los países industrializados se conoce como Infraestructura Nacional de la Calidad, []compuesta además por las actividades de: normalización, ensayos, certificación y acreditación, que a su vez son dependientes de las actividades metrológicas que aseguran la exactitud de las mediciones que se efectúan en los ensayos, cuyos resultados son la evidencia para las certificaciones. La metrología permite asegurar la comparabilidad internacional de las mediciones y por tanto la intercambiabilidad de los productos a escala internacional.
En el ámbito metrológico los términos tienen significados específicos y éstos están contenidos en el Vocabulario Internacional de Metrología o VIM.[]
Dentro de la metrología existen diversas áreas. Por ejemplo, la "metrología eléctrica" estudia las medidas eléctricas: tensión (o voltaje), intensidad de corriente (o amperaje), resistencia, impedancia, reactancia, etc. La metrología eléctrica está constituida por tres divisiones: tiempo y frecuencia, mediciones electromagnéticas y termometría.
A continuación se expone un muestrario de los instrumentos de medición más utilizados en las industrias metalúrgicas de fabricación de componentes, equipos y maquinaria.

SISTEMA INTERNACIONAL DE UNIDADES

http://prezi.com/7344ohr0_m-v/edit/#21_22810809

SISTEMA INTERNACIONAL DE UNIDADES



El Sistema Internacional de Unidades (abreviado SI del francés: Le Système International d'Unités), también denominado Sistema Internacional de Medidas, es el nombre que recibe el sistema de unidades que se usa en todos los países y es la forma actual del sistema métrico decimal. El SI también es conocido como «sistema métrico», especialmente en las naciones en las que aún no se ha implantado para su uso cotidiano. Fue creado en 1960 por la Conferencia General de Pesos y Medidas, que inicialmente definió seis unidades físicas básicas. En 1971 se añadió la séptima unidad básica, el mol. Una de las principales características, que constituye la gran ventaja del Sistema Internacional, es que sus unidades están basadas en fenómenos físicos fundamentales. La única excepción es la unidad de la magnitud masa, el kilogramo, que está definida como «la masa del prototipo internacional del kilogramo», el cilindro de platino e iridio almacenado en una caja fuerte de la Oficina Internacional de Pesos y Medidas. Las unidades del SI son la referencia internacional de las indicaciones de los instrumentos de medida y a las que están referidas a través de una cadena ininterrumpida de calibraciones o comparaciones. Esto permite alcanzar la equivalencia de las medidas realizadas por instrumentos similares, utilizados y calibrados en lugares apartados y por ende asegurar, sin la necesidad de ensayos y mediciones duplicadas, el cumplimiento de las características de los objetos que circulan en el comercio internacional y su intercambiabilidad. Entre el 2006 y el 2009 el SI se ha unificado con la norma ISO 31 para formar el Sistema Internacional de Magnitudes (ISO/IEC 80000, con la sigla ISQ).





UNIDADES BASICAS



El Sistema Internacional de Unidades consta de siete unidades básicas . Son las unidades utilizadas para expresar las magnitudes físicas definidas como básicas, a partir de las cuales se definen las demás:






Las unidades básicas tienen múltiplos y submúltiplos, que se expresan mediante prefijos. Así, por ejemplo, la expresión «kilo» indica ‘mil’ y, por lo tanto, 1 km son 1000 m, del mismo modo que «mili» indica ‘milésima’ , por ejemplo, 1 mA es 0,001 A.







Equivalencia




Metro (m). Unidad de longitud.
Definición: un metro es la longitud de trayecto recorrido en el vacío por la luz durante un tiempo de 1/299 792 458 de segundo.




Kilogramo (kg). Unidad de masa.
Definición: un kilogramo es una masa igual a la de un cilindro de 39 milímetros de diámetro y de altura, que se encuentra en la Oficina Internacional de Pesos y Medidas, en Sèvres; Francia.




Segundo (s). Unidad de tiempo.
Definición: el segundo es la duración de 9192631770 periodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del átomo de cesio 133.




Amperio o ampere (A). Unidad de intensidad de corriente eléctrica.
Definición: un amperio es la intensidad de una corriente constante que manteniéndose en dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y situados a una distancia de un metro uno de otro en el vacío, produciría una fuerza igual a 2•10-7 newton por metro de longitud.




Kelvin (K). Unidad de temperatura termodinámica.
Definición: un kelvin es la temperatura termodinámica correspondiente a la fracción 1/273,16 de la temperatura termodinámica del punto triple del agua.




Mol (mol). Unidad de cantidad de sustancia.
Definición: un mol es la cantidad de sustancia de un sistema que contiene tantas entidades elementales como átomos hay en 0,012 kilogramos de carbono 12. Cuando se emplea el mol, es necesario especificar las unidades elementales, que pueden ser átomos, moléculas, iones, electrones u otras partículas o grupos especificados de tales partículas.




Candela (cd). Unidad de intensidad luminosa.
Definición: una candela es la intensidad luminosa, en una dirección dada, de una fuente que emite una radiación monocromática de frecuencia 5,4•1014 hercios y cuya intensidad energética en dicha dirección es 1/683 vatios por estereorradián.





UNIDADES DERIVADAS




Con esta denominación se hace referencia a las unidades utilizadas para expresar magnitudes físicas que son resultado de combinar magnitudes físicas tomadas como básicas.
El concepto no debe confundirse con los múltiplos y submúltiplos, los que son utilizados tanto en las unidades básicas como en las unidades derivadas, sino que debe relacionarse siempre a las magnitudes que se expresan. Si estas son longitud, masa, tiempo, intensidad de corriente eléctrica, temperatura, cantidad de sustancia o intensidad luminosa, se trata de una magnitud básica, y todas las demás son derivadas.







EJEMPLOS DE UNIDADES DERIVADAS


Unidad de volumen o metro cúbico, resultado de combinar tres veces la longitud, una de las magnitudes básicas.

Unidad de densidad o cantidad de masa por unidad de volumen, resultado de combinar la masa (magnitud básica) con el volumen (magnitud derivada). Se expresa en kilogramos por metro cúbico y no tiene nombre especial.

Unidad de fuerza, magnitud que se define a partir de la segunda ley de Newton (fuerza=masa × aceleración). La masa es una de las magnitudes básicas pero la aceleración es derivada. Por tanto, la unidad resultante (kg • m • s-2) es derivada. Esta unidad derivada tiene nombre especial, newton.

Unidad de energía, que por definición es la energía necesaria para mover un objeto una distancia de un metro aplicándosele una fuerza de 1 Newton, es decir fuerza por distancia. Su nombre es el julio (unidad) (joule en inglés) y su símbolo es J. Por tanto, J= N • m.


En cualquier caso, siempre es posible establecer una relación entre las unidades derivadas y las básicas mediante las correspondientes ecuaciones dimensionales.


Tabla de múltiplos y submúltiplos


El separador decimal debe estar en la línea con los dígitos y se empleara la coma (,) salvo textos en inglés que emplean el punto (.). No debe ponerse ningún otro signo entre los números. Para facilitar la lectura los números pueden agruparse en grupos de tres, pero no se deben utilizar ni comas ni puntos en los espacios entre grupos. Ejemplo: 123 456 789,987 546. En algunos países se acostumbra a separar los miles por un punto para facilitar su lectura (Ejemplo: 123.456.789,987 546), siendo esta notación desaconsejada y ajena a la normativa establecida en el Sistema Internacional de Unidades.

0
Artículo principal: Prefijos del SI






PIE DE REY, O PIE DE METRO



El calibre, también denominado calibrador, cartabón de corredera, pie de rey, pie de metro, pie a coliza, forcípula (para medir árboles) o Vernier, es un instrumento para medir dimensiones de objetos relativamente pequeños, desde centímetros hasta fracciones de milímetros (1/10 de milímetro, 1/20 de milímetro, 1/50 de milímetro). En la escala de las pulgadas tiene divisiones equivalentes a 1/16 de pulgada, y, en su nonio, de 1/128 de pulgada.
Es un instrumento sumamente delicado y debe manipularse con habilidad, cuidado y delicadeza, con precaución de no rayarlo ni doblarlo (en especial, la coliza de profundidad). Deben evitarse especialmente las limaduras, que pueden alojarse entre sus piezas y provocar daños.


HISTORIA


El primer instrumento de características similares fue encontrado en un naufragio en la isla de Giglio, cerca de la costa italiana, datado en el siglo VI a. C. Aunque considerado raro, fue usado por griegos y romanos. Durante la Dinastía Han (202 a. C. - 220 d. C.), también se utilizó un instrumento similar en China, hecho de bronce, hallado con una inscripción del día, mes y año en que se realizó.


















Se atribuye al cosmógrafo y matemático portugués Pedro Nunes (1492-1577) —que inventó el nonio o nonius— el origen del pie de rey. También se ha llamado pie de rey al vernier, porque hay quien atribuye su invento al geómetra Pierre Vernier (1580-1637), aunque lo que verdaderamente inventó fue la regla de cálculo Vernier, que ha sido confundida con el nonio inventado por Pedro Núñez. En castellano se utiliza con frecuencia la voz nonio para definir esa escala.
El calibre moderno, con nonio y lectura de milésimas de pulgada, fue inventado por el norteamericano Joseph R. Brown en 1851. Fue el primer instrumento práctico para efectuar mediciones de precisión que venderse a un precio accesible.


COMPONENTES



Consta de una "regla" con una escuadra en un extremo, sobre la cual se desliza otra destinada a indicar la medida en una escala. Permite apreciar longitudes de 1/10, 1/20 y 1/50 de milímetro utilizando el nonio. Mediante piezas especiales en la parte superior y en su extremo, permite medir dimensiones internas y profundidades. Posee dos escalas: la inferior milimétrica y la superior en pulgadas.





















  1. Mordazas para medidas externas.


  2. Mordazas para medidas internas.


  3. Coliza para medida de profundidades.


  4. Escala con divisiones en centímetros y milímetros.


  5. Escala con divisiones en pulgadas y fracciones de pulgada.


  6. Nonio para la lectura de las fracciones de milímetros en que esté dividido.


  7. Nonio para la lectura de las fracciones de pulgada en que esté dividido.


  8. Botón de deslizamiento y freno.

OTROS TIPOS



  • Cuando se trata de medir diámetros de agujeros grandes que no alcanza la capacidad del pie de rey normal, se utiliza un pie de rey diferente llamado de tornero, que solo tiene las mordazas de exteriores con un mecanizado especial que permite medir también los agujeros.


  • Cuando se trata de medir profundidades superiores a la capacidad del pie de rey existen unas varillas graduadas de diferente longitud que permiten medir mayor profundidad.
    Existen modernos calibres con lectura directa digital

Precisión de 1/128”


El nonio que nos permite la precisión de 1/128” tiene una longitud de 7/16” y está dividido en 8 partes iguales. Por lo tanto cada parte mide: (7/16) / 8 = 7/128”Cada división de la escala mide 1/16 = 8/128. Resulta que cada división del
nonio es 1/128 menor que la división de la escala.
Para medir:
Se leen, en la escala, hasta antes del cero del nonio, las pulgadas y fracciones de pulgada. Las fracciones de pulgada pueden ser: media pulgada, cuartos de pulgada, octavos de pulgada o dieciséis avos de pulgada.
En seguida se cuentan los trazos del nonio, hasta el que coincide con un
trazo de la escala.
Luego se efectúa una suma de fracciones.
Precisión de 0,001”
En la escala fija, una pulgada está dividida en 40 partes de modo que cada
parte mide 1/40” o 0,025”.
El nonio con 0,001” tiene una longitud de 0,600” y está dividido en 25
partes iguales midiendo cada división del nonio: 0,600 / 25 = 0,024”.
Por tanto, cada división del nonio es 0,001” menor que cada división de la
escala.
Para medir:
La lectura se hace igual que en los casos anteriores, contando a la izquierda del cero del nonio las unidades de 0,025” cada una, sumando con los milésimos de pulgada, indicados por la coincidencia de uno de los trazos del nonio con uno de la escala fija

EL MICROSCOPIO

El microscopio (de micro-, μικρο, pequeño, y scopio, σκοπεω, observar) es un instrumento que permite observar objetos que son demasiado pequeños para ser vistos a simple vista. El tipo más común y el primero que se inventó es el microscopio óptico. Se trata de un instrumento óptico que contiene una o varias lentes que permiten obtener una imagen aumentada del objeto y que funciona por refracción.






HISTORIA DEL MICROSCOPIO


El microscopio fue inventado hacia los años 1610, por Galileo Galilei, según los italianos, o por Zacharias Janssen, en opinión de los holandeses. En 1628 aparece en la obra de William Harvey sobre la circulación sanguínea al observar al microscopio los capilares sanguíneos y Robert Hooke publica su obra Micrographia.





En 1665 Hooke observó con un microscopio un delgado corte de corcho y notó que el material era poroso, en su conjunto, formaban cavidades poco profundas a modo de celditas a las que llamó células. Se trataba de la primera observación de células muertas. Unos años más tarde, Malpighi, anatomista y biólogo italiano, observó células vivas. Fue el primero en estudiar tejidos vivos al microscopio.




































A mediados del siglo XVII un holandés, Anton vanLeeuwenhoek, utilizando microscopios simples de fabricación propia, describió por primera vez protozoos, bacterias, espermatozoides y glóbulos rojos. El microscopista Leeuwenhoek, sin ninguna preparación científica, puede considerarse el fundador de la bacteriología. Tallaba él mismo sus lupas sobre pequeñas esferas de cristal, cuyos diámetros no alcanzaban el milímetro (su campo de visión era muy limitado, de décimas de milímetro). Con estas pequeñas distancias focales alcanzaba los 275 aumentos. Observó los glóbulos de la sangre, las bacterias y los protozoos; examinó por primera vez los glóbulos rojos y descubrió que el semen contiene espermatozoides. Durante su vida no reveló sus métodos secretos y a su muerte, en 1723, 26 de sus aparatos fueron cedidos a la Royal Society de Londres.













































Un microscopio óptico



Es un microscopio basado en lentes ópticos. También se le conoce como microscopio de luz, (que utiliza luz o "fotones") o microscopio de campo claro. El desarrollo de este aparato suele asociarse con los trabajos de Anton van Leeuwenhoek. Los microscopios de Leeuwenhoek constaban de una única lente pequeña y convexa, montada sobre una plancha, con un mecanismo para sujetar el material que se iba a examinar (la muestra o espécimen). Este uso de una única lente convexa se conoce como microscopio simple, en el que se incluye la lupa, entre otros aparatos ópticos.

Microscopio óptico.Descripción: A) ocular, B) objetivo, C) portador del objeto, D) lentes de la iluminación, E) sujeción del objeto, F) espejo de la iluminación.






Un microscopio simple es aquel que solo utiliza un lente de aumento. Es el microscopio más básico. El ejemplo más clásico es la lupa. El microscopio óptico estándar utiliza dos sistemas de lentes alineados.








Un microscopio electrónico es aquél que utiliza electrones en lugar de fotones o luz visible para formar imágenes de objetos diminutos. Los microscopios electrónicos permiten alcanzar una capacidad de aumento muy superior a los microscopios convencionales (hasta 2 aumentos comparados con los de los mejores microscopios ópticos) debido a que la longitud de onda de los electrones es mucho menor que la de los fotones "visibles".












El microscopio petrográfico o de polarización se utiliza para identificar y estimar cuantitativamente los componentes minerales de las rocas ígneas y las rocas metamórficas. Cuenta con un prisma de Nicol u otro tipo de dispositivo para polarizar la luz que pasa a través del espécimen examinado (véase Óptica: Polarización de la luz). Otro prisma Nicol o analizador que determina la polarización de la luz que ha pasado a través del espécimen. El microscopio tiene un soporte giratorio que indica el cambio de polarización acusado por el espécimen.







Los microscopios de luz polarizada son microscopios a los que se les han añadido dos polarizadores (uno entre el condensador y la muestra y el otro entre la muestra y el observador). El material que se usa para ello es un cristal de cuarzo y un cristal de Nicol, dejando pasar únicamente la luz que vibra en un único plano (luz polarizada). Esta luz produce en el campo del microscopio claridad u oscuridad, según que los dos nicoles estén paralelos o cruzados.
Algunos compuestos inorgánicos responden al efecto de la luz, éstos tienen un alto grado de orientación molecular (sustancias anisótropas), que hace que la luz que los atraviesa pueda hacerlo en determinados planos vibratorios atómicos.



El microscopio de fluorescencia es una variación del microscopio de luz ultravioleta en el que los objetos son iluminados por rayos de una determinada longitud de onda. La imagen observada es el resultado de la radiación electromagnética emitida por las moléculas que han absorbido la excitación primaria y reemitido una luz con mayor longitud de onda. Para dejar pasar sólo la emisión secundaria deseada, se deben colocar filtros apropiados debajo del condensador y encima del objetivo. Se usa para detectar sustancias con autofluorescencia (vitamina A) o sustancias marcadas con fluorocromos.





El Microscopio electrónico de barrido o SEM (Scanning Electron Microscope), es aquel que utiliza un haz de electrones en lugar de un haz de luz para formar una imagen. Tiene una gran profundidad de campo, la cual permite que se enfoque a la vez una gran parte de la muestra. También produce imágenes de alta resolución, que significa que características espacialmente cercanas en la muestra pueden ser examinadas a una alta magnificación. La preparación de las muestras es relativamente fácil pues la mayoría de SEMs sólo requieren que estas sean conductoras.

EL MICROMETRO









El micrómetro, que también es denominado tornillo de Palmer, calibre Palmer o simplemente palmer, es un instrumento de medición cuyo nombre deriva etimológicamente de las palabras griegas μικρο (micros, pequeño) y μετρoν (metron, medición); su funcionamiento se basa en un tornillo micrométrico que sirve para valorar el tamaño de un objeto con gran precisión, en un rango del orden de centésimas o de milésimas de milímetro, 0,01 mm ó 0,001 mm (micra) respectivamente.
Para proceder con la medición posee dos extremos que son aproximados mutuamente merced a un tornillo de rosca fina que dispone en su contorno de una escala grabada, la cual puede incorporar un nonio. La longitud máxima mensurable con el micrómetro de exteriores es de 25 mm normalmente, si bien también los hay de 0 a 30, siendo por tanto preciso disponer de un aparato para cada rango de tamaños a medir: 0-25 mm, 25-50 mm, 50-75 mm...
Además, suele tener un sistema para limitar la torsión máxima del tornillo, necesario pues al ser muy fina la rosca no resulta fácil detectar un exceso de fuerza que pudiera ser causante de una disminución en la precisión.







HISTORIA



La invención en el siglo XVII por Wiliam Gascoigne del tornillo micrométrico suponía una mejora del vernier, y se utilizaría en astronomía para medir con un telescopio distancias angulares entre estrellas. Su adaptación posterior para calibrar pequeñas medidas se hizo por Jean Louis Palmer, quien dará nombre al dispositivo desde entonces (epónimo en Francia).
El tornillo micrómetro fue fabricado en masa y ampliamente difundido en el mercado en 1867 por Brown & Sharpe, lo que permitió el uso, de este instrumento de medida, en los talleres mecánicos de tamaño medio. Brown & Sharpe se inspiraron en varios instrumentos anteriores, uno de ellos el diseñado por Palmer.
En 1888 Edward Williams Morley demostró la precisión de las medidas, con el micrómetro, en una serie compleja de experimentos.






PRINCIPIOS DE FUNCIONAMIENTO



El mecanismo de medición se fundamenta en que al consistir en un tornillo que gira enroscado en una tuerca fija, su desplazamiento en el sentido longitudinal ha de ser proporcional al giro dado.
El número de vueltas enteras dadas se ven un una regla longitudinal, la fracción de vuelta en un tambor solidario al tornillo.
En la figura puede ver un tipo de micrómetro, que permite medir la diferencia de cuota, pandeo, de una superficie, tomando como referencia tres puntos de la superficie, mediante tres palpadores cónicos, el tornillo central determina la diferencia de cuota.



En la regla graduada vertical, con una escala en milímetros, vemos el número de vueltas enteras dadas por el tornillo, de paso un milímetro, el valor cero corresponde a la posición de la punta del tornillo en el plano de los palpadores cónicos, la escala por encima del cero mide el resalte de la superficie y la escala por debajo del cero el rebajado del plano.



La fracción de vuelta se mide en el tambor de cien divisiones, el tambor sirve de indicador sobre la regla, el tambor ha la altura del cero de la regla y la división cero del tambor enfrentado con la regla indica 0,00mm de resalte, la punta del tornillo en el mismo plano que los tres palpadores.
El ejemplo de la figura, permite ver el principio de funcionamiento del micrómetro, la regla longitudinal que mide el número de vueltas enteras dadas por el tornillo, y el tambor que mide la fracción de giro, la combinación de estas dos escalas determina la medida, la precisión del micrómetro se debe a un amplio giro del tambor por un pequeño desplazamiento en el avance del tornillo.





PARTES DEL MICROMETRO



Partiendo de un micrómetro normalizado de 0 a 25 mm, de medida de exteriores, podemos diferenciar las siguientes partes:



1. Cuerpo: que constituye el armazón del micrómetro suele tener unas plaquitas de aislante térmico para evitar la variación de medida por dilatación.
2. Tope: que determina el punto cero de la medida; suele ser de algún material duro como "metal duro" para evitar el desgaste así como optimizar la medida.
3. Espiga: elemento móvil que determina la lectura del micrómetro; la punta suele también tener la superficie en metal duro para evitar desgaste.
4. Tuerca de fijación: que permite bloquear el desplazamiento de la espiga.
5. Trinquete: que limita la fuerza ejercida al realizar la medición.
6. Tambor móvil, solidario a la espiga, en la que esta gravada la escala móvil de 50 divisiones.
7. Tambor fijo: solidaria al cuerpo, donde esta grabada la escala fija de 0 a 25 mm.




Si seccionamos el micrómetro podremos ver su mecanismo interno:







Donde podemos ver la espiga lisa en la parte que sobresale del cuerpo y roscada en la parte derecha interior, el paso de rosca es de 0,5mm, el tambor móvil solidario a la espiga que gira con él, el trinquete en la parte derecha de la espiga, con el mecanismo de embrague, que desliza cuando la fuerza ejercida supera un limite.








El extremo derecho del cuerpo es la tuerca donde esta roscada la espiga, esta tuerca esta ranurada longitudinalmente y tiene una rosca cónica en su parte exterior, con su correspondiente tuerca cónica de ajuste, este sistema permite compensar los posibles desgastes de la rosca, limitando, de este modo, el juego máximo entre la espiga y la tuerca roscada en el cuerpo del micrómetro.



Sobre el cuerpo esta encajado el tambor fijo, que se puede desplazar longitudinalmente o girar si es preciso, para ajustar la correcta lectura del micrómetro, y que permanecerá solidario al cuerpo en las demás condiciones.



La parte del tambor fijo, que deja ver el tambor móvil, es el número entero de vueltas que ha dado la espiga, dado que el paso de rosca de la espiga es de 0,5mm, la escala fija, grabada en el tambor fijo, tiene una escala de milímetros enteros en la parte superior y de medios milímetros en la inferior, esto es la escala es de medio milímetro.





El tambor móvil, que gira solidario con la espiga, tiene gravada la escala móvil, de 50 divisiones, numerada cada cinco divisiones, y que permite determinar la fracción de vuelta que ha girado el tambor, lo que permite realizar una lectura de 0,01mm en la medida.







LECTURA DEL MICROMETRO



En el sistema métrico decimal se utilizan tornillos micrométricos de 25 mm de longitud; estos tienen un paso de rosca de 0,5 mm, así al girar el tambor toda una vuelta la espiga se desplaza 0,5 mm.
En el tambor fijo del instrumento hay una escala longitudinal, es una línea que sirve de fiel, en cuya parte superior figuran las divisiones que marcan los milímetros, en tanto que en su lado inferior están las que muestran los medios milímetros; cuando el tambor móvil gira va descubriendo estas marcas, que sirven para contabilizar el tamaño con una precisión de 0,5 mm.
En el borde del tambor móvil contiguo al fiel se encuentran grabadas en toda su circunferencia 50 divisiones iguales, indicando la fracción de vuelta que se hubiera realizado; al suponer una vuelta entera 0,5 mm, cada división equivale a una cincuentaava parte de la circunferencia, es decir nos da una medida con una precisión de 0,01 mm.
En la lectura de la medición con el micrómetro nos hemos de fijar por tanto primero en la escala longitudinal, que nos indica el tamaño con una aproximación hasta los 0,5 mm, a lo que se tendrá que añadir la medida que se aprecie con las marcas del tambor, llegando a conseguirse la medida del objeto con una precisión de 0,01 mm.

En el ejemplo de la fotografía tenemos el detalle de un micrómetro donde en la escala longitudinal se ve en su parte superior la división de 5 mm y en la inferior la de otro medio milímetro más. A su vez, en el tambor móvil, la división 28 coincide con la línea central longitudinal.



Así, la medida del micrómetro es:
















TIPOS DE MICROMETROS